首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3081篇
  免费   621篇
  国内免费   576篇
电工技术   1011篇
综合类   352篇
化学工业   74篇
金属工艺   59篇
机械仪表   340篇
建筑科学   5篇
矿业工程   17篇
能源动力   46篇
轻工业   4篇
水利工程   3篇
石油天然气   6篇
武器工业   76篇
无线电   184篇
一般工业技术   61篇
冶金工业   40篇
原子能技术   4篇
自动化技术   1996篇
  2024年   25篇
  2023年   147篇
  2022年   129篇
  2021年   181篇
  2020年   234篇
  2019年   287篇
  2018年   172篇
  2017年   220篇
  2016年   235篇
  2015年   215篇
  2014年   236篇
  2013年   296篇
  2012年   192篇
  2011年   217篇
  2010年   156篇
  2009年   183篇
  2008年   149篇
  2007年   176篇
  2006年   148篇
  2005年   119篇
  2004年   110篇
  2003年   78篇
  2002年   61篇
  2001年   58篇
  2000年   40篇
  1999年   32篇
  1998年   27篇
  1997年   28篇
  1996年   26篇
  1995年   21篇
  1994年   10篇
  1993年   15篇
  1992年   16篇
  1991年   9篇
  1990年   12篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1964年   1篇
  1962年   1篇
  1954年   1篇
  1951年   1篇
排序方式: 共有4278条查询结果,搜索用时 22 毫秒
111.
This paper focuses on the robust output precise tracking control problem of uncertain nonlinear systems in pure‐feedback form with unknown input dead zone. By designing an extended state observer, the states unmeasurable problem in traditional feedback control is solved, and the lumped uncertainty, which is caused by system unknown functions and input dead zone, is estimated. In order to apply separation principle, finite‐time extended state observer is designed to obtain system states and estimate the lumped uncertainty. Then, by introducing tracking differentiator, a modified dynamic surface control approach is developed to eliminate the ‘explosion of complexity’ problem and guarantee the tracking performance of system output. Because tracking differentiator is a fast precise signal filter, the closed‐loop control performance is significantly improved when it is used in dynamic surface control instead of first‐order filters. The L stability of the whole closed‐loop system, which guarantees both the transient and steady‐state performance, is shown by the Lyapunov method and initialization technique. Numerical and experiment examples are performed to illustrate our proposed control scheme with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
112.
A novel three‐dimensional guidance law using only line‐of‐sight azimuths based on input‐to‐state stability and robust nonlinear observer is proposed for interception of maneuvering targets. The proposed guidance law does not need any prior information of unknown bounded target maneuvers and uncertainties. Since in practice the line‐of‐sight rate is difficult for a pursuer to measure accurately, a nonlinear robust observer is introduced to estimate it. A three‐dimensional guidance law with bearing only measurement is obtained for interception of maneuvering targets. The presented algorithm is tested using computer simulations against a maneuvering target. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
113.
This paper is concerned with the self‐triggered output feedback control for discrete‐time systems, where an updating instants scheduler is implemented to determine when the controller is updated. For both the full‐order and reduced‐order observer cases, the updating instants are determined, respectively, where only the information of the estimated state at the current updating instant is required to obtain the next updating instant. It is shown that, with the proposed self‐triggered control schemes, not only the updating frequency is significantly reduced, but also the uniform ultimate boundedness of the closed‐loop system is guaranteed. Finally, a numerical example is used to verify the effectiveness and the merits of the proposed approaches. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
114.
Active disturbance rejection control (ADRC), as proposed by Prof. Jingqing Han, reduces first the plant dynamics to its canonical form, normally in the form of cascade integrators, for which the standard controller can be employed to meet the design specifications. This paper concerns with the selection of the canonical form for non-minimum phase systems. In particular, it is shown that, by employing the well known controllable canonical form, the uncertainties of such systems can be divided into two terms in the state space model, one in the control channel and the other in the output channel. The necessary and sufficient condition is obtained for the stability of the closed-loop system with the proposed canonical form and ADRC. Also, by showing the necessity of the detectability of the extended system as well as certain information of the systemˉs “zeros”, we present the fundamental guidelines of design ADRC for non-minimum phase uncertain systems.  相似文献   
115.
With the rapid deployments of the active disturbance rejection control (ADRC) as a bonafide industrial technology in the background, this paper summarizes some recent results in the analysis of linear ADRC and offers explanations in the frequency response language with which practicing engineers are familiar. Critical to this endeavor is the concept of bandwidth, which has been used in a more general sense. It is this concept that can serve as the link between the otherwise opaque state space formulation of the ADRC and the command design considerations and concerns shared by practicing engineers. The remarkable characteristics of a simple linear ADRC was first shown in the frequency domain, followed by the corresponding analysis in time domain, where the relationship between the tracking error and the ADRC bandwidth is established. It is shown that such insight is only possible by using the method of solving linear differential equations, instead of the more traditional techniques such as the Lyapunov methods, which tend to be more conservative and difficult to grasp by engineers. The insight obtained from such analysis is further demonstrated in the simulation validation.  相似文献   
116.
This paper studies the problem of using a sampled‐data output feedback controller to globally stabilize a class of nonlinear systems with uncertain measurement and control gains. A reduced‐order observer and a linear output control law, both in the sampled‐data form, are designed without the precise knowledge of the measurement and control gains except for their bounds. The observer gains are chosen recursively in a delicate manner by utilizing the output feedback domination approach. The allowable sampling period is determined by estimating and restraining the growth of the system states under a zero‐order‐hold input with the help of the Gronwall–Bellman Inequality. A DC–DC buck power converter as a real‐life example will be shown by numerical simulations to demonstrate the effectiveness of the proposed control method.  相似文献   
117.
This paper investigates the distributed finite‐time consensus‐tracking problem for coupled harmonic oscillators. The objective is to guarantee a team of followers modeled by harmonic oscillators to track a dynamic virtual leader in finite time. Only a subset of followers can access the information of the virtual leader, and the interactions between followers are assumed to be local. We consider two cases: (i) The followers can obtain the relative states between their neighbors and their own; and (ii) Only relative outputs between neighboring agents are available. In the former case, a distributed consensus protocol is adopted to achieve the finite‐time consensus tracking. In the latter case, we propose a novel observer‐based dynamic protocol to guarantee the consensus tracking in finite time. Simulation examples are finally presented to verify the theoretical analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
118.
This paper focuses on the design of nonlinear robust controller and disturbance observer for the longitudinal dynamics of a hypersonic vehicle (HSV) in the presence of parameter uncertainties and external disturbances. First, by combining terminal sliding mode control (TSMC) and second-order sliding mode control (SOSMC) approach, the secondorder terminal sliding control (2TSMC) is proposed for the velocity and altitude tracking control of the HSV. The 2TSMC possesses the merits of both TSMC and SOSMC, which can provide fast convergence, continuous control law and hightracking precision. Then, in order to increase the robustness of the control system and improve the control performance, the sliding mode disturbance observer (SMDO) is presented. The closed-loop stability is analyzed using the Lyapunov technique. Finally, simulation results illustrate the effectiveness of the proposed method, as well as the improved overall performance over the conventional sliding mode control (SMC).  相似文献   
119.
120.
This article considers stabilization of a one‐dimensional Schrödinger equation with variable coefficient and boundary observation which suffers from an arbitrary given time delay. We design an observer and predictor to stabilize the system. The state is estimated in the time span where the observation is available, and also predicted in the time interval where the observation is not available. It is shown that the estimated state feedback stabilizes the system exponentially. A numerical simulation is presented to illustrate the effect of the stabilizing controller.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号